High-Quality Protein Crystal Growth of Mouse Lipocalin-Type Prostaglandin D Synthase in Microgravity

نویسندگان

  • Koji Inaka
  • Sachiko Takahashi
  • Kosuke Aritake
  • Toshiharu Tsurumura
  • Naoki Furubayashi
  • Bin Yan
  • Erika Hirota
  • Satoshi Sano
  • Masaru Sato
  • Tomoyuki Kobayashi
  • Yoshinori Yoshimura
  • Hiroaki Tanaka
  • Yoshihiro Urade
چکیده

Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) catalyzes the isomerization of PGH(2) to PGD(2) and is involved in the regulation of pain and of nonrapid eye movement sleep and the differentiation of male genital organs and adipocytes, etc. L-PGDS is secreted into various body fluids and binds various lipophilic compounds with high affinities, acting also as an extracellular transporter. Mouse L-PGDS with a C65A mutation was previously crystallized with citrate or malonate as a precipitant, and the X-ray crystallographic structure was determined at 2.0 Å resolution. To obtain high-quality crystals, we tried, unsuccessfully, to crystallize the C65A mutant in microgravity under the same conditions used in the previous study. After further purifying the protein and changing the precipitant to polyethylene glycol (PEG) 8000, high-quality crystals were grown in microgravity. The precipitant solution was 40% (w/v) PEG 8000, 100 mM sodium chloride, and 100 mM HEPES-NaOH (pH 7.0). Crystals grew on board the International Space Station for 11 weeks in 2007, yielding single crystals of the wild-type L-PGDS and the C65A mutant, both of which diffracted at around 1.0 Å resolution. The crystal quality was markedly improved through the use of a high-viscosity precipitant solution in microgravity, in combination with the use of a highly purified protein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement in the quality of hematopoietic prostaglandin D synthase crystals in a microgravity environment

Human hematopoietic prostaglandin synthase, one of the better therapeutic target enzymes for allergy and inflammation, was crystallized with 22 inhibitors and in three inhibitor-free conditions in microgravity. Most of the space-grown crystals showed better X-ray diffraction patterns than the terrestrially grown ones, indicating the advantage of a microgravity environment on protein crystalliza...

متن کامل

Structural Basis of the Catalytic Mechanism Operating in Open-Closed Conformers of Lipocalin Type Prostaglandin D Synthase*

Lipocalin type prostaglandin D synthase (L-PGDS) is a multifunctional protein acting as a somnogen (PGD2)-producing enzyme, an extracellular transporter of various lipophilic ligands, and an amyloid-beta chaperone in human cerebrospinal fluid. In this study, we determined the crystal structures of two different conformers of mouse L-PGDS, one with an open cavity of the beta-barrel and the other...

متن کامل

High-quality crystals of human haematopoietic prostaglandin D synthase with novel inhibitors

Human haematopoietic prostaglandin D synthase (H-PGDS; EC 5.3.99.2) produces prostaglandin D(2), an allergic and inflammatory mediator, in mast cells and Th2 cells. H-PGDS has been crystallized with novel inhibitors with half-maximal inhibitory concentrations (IC(50)) in the low nanomolar range by the counter-diffusion method onboard the Russian Service Module on the International Space Station...

متن کامل

Perineuronal oligodendrocytes protect against neuronal apoptosis through the production of lipocalin-type prostaglandin D synthase in a genetic demyelinating model.

The genetic demyelinating mouse "twitcher" is a model of the human globoid cell leukodystrophy, caused by galactosylceramidase (GALC) deficiency. Demyelination in the twitcher brain is secondary to apoptotic death of oligodendrocytes (OLs). Lipocalin-type prostaglandin (PG) D synthase (L-PGDS), a protein expressed in mature OLs, was progressively upregulated in twitcher OLs; whereas expression ...

متن کامل

The impact of lipocalin-type-prostaglandin-D-synthase as a predictor of kidney disease in patients with type 2 diabetes

Hypertension and diabetes are clinical conditions which contribute to the development of chronic kidney disease as well as risk factors for cardiovascular events. In recent years, lipocalin-type-prostaglandin-D-synthase (beta trace protein; BTP) has increasingly been studied as an alternative to creatinine for the evaluation of renal function as well as for being a possible biomarker for cardio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011